Improving mass spectrometry peak detection using multiple peak alignment results.
نویسندگان
چکیده
Mass spectrometry data are often corrupted by noise. It is very difficult to simultaneously detect low-abundance peaks and reduce false-positive peak detection caused by noise. In this paper, we propose to improve peak detection using an additional constraint: the consistent appearance of similar true peaks across multiple spectra. We observe that false -positive peaks in general do not repeat themselves well across multiple spectra. When we align all the identified peaks (including false-positive ones) from multiple spectra together, those false-positive peaks are not as consistent as true peaks. Thus, we propose to use information from other spectra in order to reduce false-positive peaks. The new method improves the detection of peaks over the traditional single spectrum based peak detection methods. Consequently, the discovery of cancer biomarkers also benefits from this improvement. Source code and additional data are available at: http://www.ece.ust.hk/ approximately eeyu/mspeak.htm.
منابع مشابه
HDP-Align: Hierarchical Dirichlet Process Clustering for Multiple Peak Alignment of Liquid Chromatography Mass Spectrometry Data
Matching peak features across multiple LC-MS runs (alignment) is an integral part of all LC-MS data processing pipelines. Alignment is challenging due to variations in the retention time of peak features across runs and the large number of peak features produced by a single compound in the analyte. In this paper, we propose a Bayesian non-parametric model that aligns peaks via a hierarchical cl...
متن کاملAn optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure
MOTIVATION Comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-MS) brings much increased separation capacity, chemical selectivity and sensitivity for metabolomics and provides more accurate information about metabolite retention times and mass spectra. However, there is always a shift of retention times in the two columns that makes it difficult to compare metabolic pro...
متن کاملComparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry
Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures h...
متن کاملData pre-processing in liquid chromatography-mass spectrometry-based proteomics
MOTIVATION In a liquid chromatography-mass spectrometry (LC-MS)-based expressional proteomics, multiple samples from different groups are analyzed in parallel. It is necessary to develop a data mining system to perform peak quantification, peak alignment and data quality assurance. RESULTS We have developed an algorithm for spectrum deconvolution. A two-step alignment algorithm is proposed fo...
متن کاملBiomarker discovery for arsenic exposure using functional data. Analysis and feature learning of mass spectrometry proteomic data.
Plasma biomarkers of exposure to environmental contaminants play an important role in early detection of disease. The emerging field of proteomics presents an attractive opportunity for candidate biomarker discovery, as it simultaneously measures and analyzes a large number of proteins. This article presents a case study for measuring arsenic concentrations in a population residing in an As-end...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2008